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Background in Historical Musicology. In addition to making inferences about historical
performance practice, it is interesting to ask questions about the experience of historical listeners.
In particular, how might their perception vary from that of presianytlisteners (antisteners at

other time points, more generally) as a function of the music to whichwhey exposed
throughout their lives.

Background in Music Cognition. To illustrate the approach, we focus e tognitive process

of expectationwhich has long beemf interest to musicians and music psychologists, partly
because it is thought to be one of the processes supporting the induction of emotion by music.
Recent work has established models of expectation based on probabilistic learning of statistical
regulaities in the music to which an individual is exposed. This raises the possibility of
developing simulations of historical listeners by training models on the music to which they
might have been exposed.

Aims. First,we aimto develop a framework for créag and testing simulated perceptual models

of historical listeners. Secondie aimto provide simple but concrete illustrations of how the
simulations can be appliéd a preliminary approaciihese are intended as illustrative feasibility
studies to proide a springboard for further discussion and development rather than fully fledged
experiments in their own righthird, we aimto appeal to the expertise of historical musicologists

in identifying useful research questions and appropriate constrairitefeimulations, so these

can be used to complement existing evidence on the perception of music by historical listeners.
Main contribution . Our primary contribution is to develop and illustrate a framework which we
believe can shed light on the perceptif music by historical listeners and, in particular, how
listeners of different periods might have generated different predictions to music as a function of
differences in their musical experiences. The framework we develop involves several steps. First,
identifying a research question; second, selecting a corpus (or corpora) to represent the musical
experience of the listener(s) we want to simulate; third, identify the central musical features of
interest and use them to develop a representation scloerte fselected compositions; finally,

the model parameters are selected and the models are trained on the selected corpora to simulate
particular listeners. We identify and discuss the decisions that must be made at each step. Finally,
we illustrate the lamework by training models on a range of corpora from different stylistic
traditions from different locations and points in history, including analyses at the level of entire
collections, individual compositions, and individual events.

Implications. Theresults of our illustrative analyses suggest that the trained models behave as
we hypothesiseddemonstrating sensitivity to stylistic similarities whicbuld illuminate how
listeners from different eras mighéve experiencenhusical structures. Howevehe approach

is in need of expertise in historical musicology to establish clear and relevant research questions
and to select appropriate parameters for the simulations. With such additional input, we believe
simulated listeners will provide importansights, alongside other evidence, into the question of
how our forebears experienced the music of their time.
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1. Introduction

Recent decades have seen an increasing interest in hisyoinéatimed performance,

in which attempts are made to follow period performance practice wherever possible.
However, the musical perception of modern audiences is affected by the music they
have listened to throughout their lives and this music, in tuih jsvmost cases, reflect
several hundred years of musical change (e.g. Butt,;2@@2hWilkinson, 2002) Of
course, we cannot recreathiatorically authentic audience (at least not ethically). But
perhaps we can simulate one.

Computational methodsrgvide for the intriguing possibility of creating models that
simulate the perception of listeners of different periods. In particular, we propose that
machine learning methods for modelling the perception and cognition of music can be
used to simulate thgerception of an historical audience by training the model on the
music that a listener might have heard during their lifetime.

The approach may be capable of speaking to many interesting questions about early
music itself as well as how it was perceilmdcontemporary listeners. One example is
pitch spelling (e.g., Knopke & JYrgensen, 2M2redith, 2006) in which a model of

how music was perceived could help to identify ambiguous pitch spellings in historical
sources. It could also be useful in conitihg evidence in cases of ambiguous
authorship (e.g., van Kranenburg, 2008) and questions of stylistic influence between
composers and performers (seqy., Cook, 2007, for an example in performance). On
the level of musical style analysis, a model ohiatorical listener could make
contributions in testing musicological theories about the characteristic features of
musical styles (e.g., Volk & ddaas, 2013)and how such differences may be
empirically explored by exposing contemporary listeners to ttddfrgensen, Pearson,

& Knopke,20142016. The approach could also contribute to questions of relevance
in music cognition such as the development of tonal perception (e.g., Huron & Veltman,
2006).

This is a first attempt to define a framework for explgrthe approach and we also

give some illustrative examples as a very preliminary step towards illustrating its utility.
The examples are just thBtthey are not intended to be fully fledged studies but to
provide a proof of concepto inspire further disgssion and development of the
approach. In these exampleg focus on the cognitive process of expectation which
has been widely studied in music cognition research (e.g., Huron, i2eger, 1956
Narmour, 1990), because it is an area in which we haperiexce (Eerola, 2004
Pearce, 2005) and which lends itself to a machéaening approach. Furthermore,
there is evidence thdistenersO musicaxpectations arénfluenced by musical
experience (Eerola, 20pMarmour, 1990). However, the approach fteefeneral and

should apply beyond expectation to other psychological processes in music perception
(e.g., perceptual discrimination, similarity, classification, memory, emotion, attention).

In so doing, it would be appropriate to model both aspectsisimperception that are
sensitive to musical experience and those that are not. We focus on the former category
in our examples below because they describe phenomena that might change between
historical musical periods.
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The approach is also broadly comipkg with corpusbased approaches in empirical
musicology (e.g., Cook, 200Knopke & JYrgensen, 201Meredith, 2006 van
Kranenburg, 2008/olk & de Haas, 2013), with an additional focus on models that are
psychologically motivated in the sense that thegount well for listenersO perception
of music. Finally, and importantly, to fully realise its potential, the approach needs
interdisciplinary collaboration with historical musicologists to identify questions of
interest and define appropriate constmiior the models.

2. A cognitive model of music perception

2.1 Introduction

In this section, we summarise a computational approach to modelling expectation in
music perception (Pearce, 2005). Although this is only one of several models of
expectation inthe literature (e.g., Collins at., 2014 Margulis, 2005 Milne etal.,

2011 Narmour, 1990, Schellenberg, 199&mperley, 200;7Toiviainen & Krumhansl,

2003) and related conceptshuas tensiore(g.,Farbood, 2012;erdahl & Krumhansl,

2007 Rohrmeie, 2011, we choose it to exemplify the approach because it has useful
features such as incorporating an experiedrdgen aspect, combining local (intra
opus) and longeterm (extraopus) effects on musical expectation, and the ability to
combine informabn from multiple musical features, including tonal and -tamal

effects (all of which are described further below). The purpose of the models described
here is to understand the cognitive processes involved in generating expectations about
forthcoming eents while listening to music. Expectations are of general interest in
psychology, but have particular relevance to music as they are thought to be involved
in the induction of emotion in the listener (Huron, 20086slin & VSstfjSIl, 2008
Meyer, 1956). h simulating this aspect of music perception, the task for the model is
to predict some feature of the next event in the music. Here we use melodic pitch
expectations as an example (i.e., predicting the pitch of the next note in a melody) but
the approaclyeneralises naturally to predicting the interval, timing or duration of the
next note, combinations of features of the next note, the next chord in a sequence and
so on.

2.2 Markov models

The central feature of the modelling approach is to learn seglestatistical
dependencies between notes in an unsupervised manner through exposure to melodies.
This is achieved using Markov modelsregram modelsNlanning & SchYtze, 1999,

ch. 9) viewing a melody as a sequence of-awerlapping events, each repnetesl by

a property such as pitch. Amgram model computes the conditional probability of an
event given ther-1 preceding events in the sequence. The quamttyis called the
order of the model. Am-gram model estimates the conditional probabilityroeaent

e given the context of the preceding-1 events based on the frequency with which

that event occurred in the same context in the prior experience of the model.
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count(ce)

plele) = (1)

count(c)

wherecedenotes the concatenationodnde. The conditional probabilitp(e|c) varies
between 0 and 1. Given a trainedram model, the degree to which an event appearing
in a given context is unexpected can be defined aisfitnenation contenIC), h(elc),

of the event given the context and the model:

1
h(e‘C) = |Og 2 p(T’C) (2)

IC ranges from Ot infinity: low values correspond to high probability events and vice
versa. Given an alphabétof events (e.g., a set of pitches in our case) which have
appeared in the prior experience of the model, the uncertainty of the modelOs
expectations in a given melodic context can be defined aertiepy or average
information contentof the eventsn /:

H(c) = plele)h(elc). ©)

el &

Entropy ranges from 0 tog,(]/ |): low values indicate low uncertainty and vice versa.

In modelling musical perception, entropy represents the predictive uncertainty about
which musical event will come next in a given context (beforertbizt actually arrives)

while information content reflects the unexpectedness of the event that actually does
follow.

2.3. Extensions to Markov Models

The present framework extends basic Markov modelling in three ways. First, we
consider models with diffent fixed orders. Variablerder models, where the order
used varies throughout prediction (Cleary & Teahan, 1%®arce, 2005) are also
possible but not considered here.

Second, the system may be configured with two compoK€ntklin & Witten,1995;
Pearceet al., 2006)first, the longterm model (LTM), which is exposed to an entire
corpus (representing schematic effects of leergn exposure to music); second, a
shortterm model (STM), which is exposed only to the current melody (representing
shortterm processing of local structure in the current listening episode). The models
may be used in combination or in isolation. There are five configurations: the STM
alone (STM); the LTM alone (LTM); the LTM+, which is a version of the LTM that
learns dynamially while predicting, in comparison to the LTM which is fixed and
static after training; the STM and LTM together (BOTH); and the STM and LTM+
together (BOTH+). When used in combination (BOTH, BOTH+), each model
generates a probability distribution prettig the pitch of each note as the melody
proceeds, which are then combined (Conklin & Witten, 1995, Peaade 2005). In
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the examples provided belowe focus on thdong-term model (LTM) The reasons
for this are explained in 3.1.1

Third, the framewrk allows for modelling and combining different features present in
and derived from the events making up the musical surface. We have to treat music,
and the perception of it, as a multidimensional phenomenon since musical elements
differ in pitch, timirg, loudness, timbre, spatial location and other attributes and these
dimensions are known to influence perception (Levitin & Tirovalas, 2009). Pitch
perception alone shows evidence of multidimensional cognitive representations
(Shepard, 1982). Thereforeaah note is represented as a discrete event consisting of a
conjunction of basic features such as pitch, onset time, duration, loudness etc., which
may assume one of a finite set of values @hpabetor domainof that feature). A
multiple viewpoint frarework (Conklin & Witten, 1995 Pearce eél., 2005) may be

used to predict a basic feature (e.g., pitch, onset time) using multiple models trained on
different abstract derivations of the basic feature (e.g., scale degreepriaétr
interval). Furtherma, such representations may be selected automatically to improve
the predictive accuracy of the model by minimising information content (Chater, 1999
Pearce, 2005). In this preliminary work, we do not use these advanced features of the
framework, focusingnstead on comparing two basic featusesile degreéMIDI note
numbermod 12 relative to tonal centjeand pitch intervalfom previous notein
semitones, with sign representing direction).

2.4. Summary

Using the system involves choosing a configiora(i.e., STM, LTM, LTM+, BOTH,
BOTH+), choosing the bastarget viewpoints of interesind then choosing the set of
source viewpointased in prediction (either manually or using viewpoint selection).

In this work we compare loagerm models (LTM) withvarying fixed orders using
target viewpoints o$cale degreand pitch interval (in this work the source viewpoint

is always the same as the target). Future work will develop more sophisticated models
of historical listeners using more complex sets of etliy parameters.

We focus on Markov models since they have been shown to be capable of learning
stylistic characteristics and accurately predicting listenersO expectations. However,
there is also work on other kinds of machine learning methods for moregdéction,
including neural networks (e.g., Cherla et al., 2013). Although the application of these
methods to musical structure is in its infancy, they could be substituted into the
framework in future, should they be shown to model expectations maresalyg than

the Markov models used in our examples below.

2.5. Empirical support for the framework

The use of this approach in a cognitive model of auditory expectation is motivated by
empirical evidence of implicit learning of statistical regularitiesiusical melody and
other sequences of pitched events (Oram & Cuddy, ;19@%ran etl., 1999).
Consistent with a process of statistical learning, melodic pitch expectations vary
between musical styles (Krumhanslaét 2000) and cultures (Carlsen, 198
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Castellano eal., 1984 Curtis & Bharucha, 200%erola, 2004, Kessler at., 1984
Krumhansl etl., 1999), throughout development (Schellenbesd.e2002) and across
degrees of musical training and familiarity (Krumhansgllet2000 Pearce eé#l., 2010).

In particular, research exploring differences in expectation between listeners with
experience of different musical cultures (Carlsen, 1981; Castellaig £984; Curtis

& Bharucha, 2009; Eerola, 2004, Kesslermlet 1984; Krumhansl etl., 1999) is
complementary to our proposal to study differences in expectation between listeners
with experience of music of different historical periotisdeed, ecent work has
attempted to simulate these effects of cultural musical exposure, using anchpproa
related to the one we propose here (Curtis & Bharucha, 2009).

In particular, there is evidence that pitch expectations are informed both bietomg
exposure to music and by the encoding of regularities in the immediate context.
Krumhansl, for exampleshowed that tonal expectations derived from ptiine
experiments (Krumhansl & Kessler, 1982) are closely related to zerdén
distributions of chromatic scale degrees in large collections of music. Krumhansl
argued that tonal hierarchies are acquibgdstatistical learning through loftgrm
exposure to music. There is also evidence that local musical structure influences
expectations. Oram & Cudd1995) conducted a series of experiments in which
continuation tones were rated for musical fit in tlatext of artificially constructed
sequences of pure tones in which the tone frequencies were carefully controlled. The
continuation tone ratings of both trained and untrained listeners were significantly
related to the frequency of occurrence of the camtiion tone in the context sequence.
Tillmann and colleagues have shown that target chords are processed more accurately
and quickly when they are related both to the local and the global harmonic context
(previous chord and prior context of six chordsypectively (Tillmann edl., 1998)

and that these effects can be explained by a mechanism of implicit statistical learning
of sequential harmonic patterns in music (Tillmanalgt2000).

There is also evidence that pitch expectations are influencedidgherorder
probabilistic prediction. Saffran at., (1999) showed that infants and adults are
capable of implicitly learning firsbrder probabilities in tone sequences and using them

to identify segment boundaries. These influences also hold for mssicaili. In a

study using Finnish spiritual hymns, Krumhansl, Louhivuori, Toiviainen, JSrvinen &
Eerola(2001) presented evidence for the influence of seeortter probabilities on
listenersO pitch expectations. Extending these results, the model prebevie has

been tested by comparing its pitch expectations with those of human listeners (Pearce,
2005). In a series of reanalyses of existing behavioural data (Cuddy & Lunny, 1995
Manzara eal., 1992 Schellenberg, 1997), it was shown that this modeldicts
listenersO expectations better than existing models of melodic expectation based on
innate principles (Narmour, 1996chellenberg, 1997). Using a novel visual cueing
paradigm for eliciting auditory expectationstmdut pausing playback, Pearceakt

(2010) confirmed that the model predicts listenerOs pitch expectations in melodies
without explicit rhythmic structure. Recent work has extended these findings to entropy
as a model of uncertainty in music perception (Hansah,&2013).
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To summarie, manystudies suggest that melodic expectangy ssrongcandidate for
tapping into acquired knowledge of music through expogtoe a review, see
Tillmann, PoulinCharronnat, Bigand, 2014)Rather than compare expectations
between cultures, as doneprevious research, we propose to examine expectations
between historical periods. The obvious problem is that we no longer have access to
listeners from those periods for empirical psychological rese&fovever, attempts

to simulak the sensitivitie®of listenersof a particular periothave beerconductedy
giving contemporary listeners exposure to different historical styl&sgensen,
Pearson, & Knopkg20142016, for example explicitly investigatedperception of
historical chang®where highly caventionalised treatment of dissonance gave way to
unprepareddissonancein the early decade of 160D by exposing contemporary
listeners to varying amounbfmusical exampleBom the time periods involvedlhe
results suggest thatatistical learninghrough experience couldccount forsome
differences in familiarityratings

3. Methodology

3.1 Identifying Research Questions

The most important part of this proposal is to demonstrate the kind of research
guestions that can be addressed with cognitiodelling and how su@napproach is
connected to information derived fromdiverse set of music corpora. Given the
interdisciplinary nature of the endeavour, these must be coherent in terms of
musicological value, psychological validity and computsdideasibility.

How would a seventeenttentury listener have responded to a particaltzte in a
Monteverdi madrigalAre there events that would have been surprising to such a
listener but which are not to aoaern listener and vice versgould the sese of
tension arising from a perception of uncertainty have been the same for a contemporary
listeneras for a modern day listeneFAese questions can be addressed to some extent
by simulating listeners of different periods by exposing the model to mbisimse
periods and comparing the responses of these simulated listeners to music of different
periods (their own, future and past periods). Other research questions might address the
amount of information present in different voices, the features egablnimal
prediction of music at different periods, issues of stylistic development and ambiguities
involved in transcribing early sources.

3.1.1 The present research question

As a first step, we ask whether loteym modeldrained ondifferent stylisticcorpora
(across cultures and time) are capablesiofulating enculturated listeners to those
corpora. Our preliminary approach is to compare models trained on different corpora,
representing enculturated listeners in the respective stylistic tradittoregtif they
differ in plausible ways. Specifically, we take a collection of seventemeritury
madrigals as our point in history and examine whether-termg models trained on
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increasingly distant collections of music (culturally and historically) niageasingly
different predictions about the structure of the madrigals.

3.2 Selecting the Corpus

To simulate a given listener, the model needs to be exposed to the same music that the
listener has heard throughout their lifetime. Ideally, we would silswlate issues
affecting the encoding (e.g., attention, arousal, interest, order effects and so on) and
retrieval of the music (e.g., memory limitations). Although it might be interesting to
model a specific listener in this way, we propose as a staing, to simulate &ypical

listener of a given period by training the model ar@resentativeample of the music
available within the culture of that listener.

This raisedoththe thorny issue of what we mean by typical and representati/éhe

vexed question of whether it is actually possible to construct such a dorpugiven
historical period and cultur&here is a balance to be struck between making the corpus
so specific (in terms of modelling a given listener in a given place at a tyivento

the extent that this is possible) that the results have limited scope and making it so
general as to be meaningless. The appropriate approach will depend to some extent on
the question being addressed. Another issue is that a representativecfamydie for

a typical listener of a given period in a given location may well have included pieces
that have not survived or attracted continued interest and, therefore, are no longer
readily available.

3.2.1 The present corpus

Here weillustrate the aproachby comparinga seventeenthentury collection of
madrigalswith other collections of monophonic vocal music, representaunéinuum
from related to unrelated musicgenres. Theaim is to explore how sensitive the
various representations are imantifying broadstylistic differences between the
corporaat the level of entire collections, individumdmpositions and specific events

3.2.2 Musical examples from the Coppini collection

We took examples from Aquilino CoppiniOs collection of madritigdmusica tolta

da i madrigalifrom 1607 (Jacobsen, 1998, 2003), which consist of 24 polyphonic vocal
works byBanchieri, GabrieliGiovanelli, Marenzio, Monteverdi, Nanino andecchi.
Coppini was an associate of Monteverdi and edited at leasthbodes of madrigals
(Rorke, 1984) under the support of the Cardinal Borromeo (Macy, 2011). The
advantage of thi€oppini collectionis that it is available in electronic format, both
from KernScore§ andfrom the International Music Score Library Project

3.2.3 Derived longterm models of musical styles (LTMs)

To demonstrate the possibilities of the computational analysis of historical styles, a few
points of reference are needed. In this case, an illustrative range of references is used
to convey the gwsitivity and consistency of the measures used. We chose six samples
of music that vary in terms of stylistic similarity to the music contained iCtpini
collection
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The first collection comes from the substantial repertoire of Ba&&h chorales
collected by C. P. E. Bach after J.S. BachOs death (Dsrffel, 1940). These 371 chorales
are available in KernScorés

Second, wewere fortunate to have access tdzanly Renaissance collecti@ontaining

384 polyphonic secular works composed between 11380, many from th&€hantilly
Manuscript(Reaney, 1954). This corpus has been curated, encoded and supplied by
Michael W. Beauvois.

A more distant collection of vocal music is taken from a small sam fikdefr by Franz
Schuber{35 Lieder) and songs 8tephen Foste(38 songs). This collection, referred
to here asschubert & Foster songsocal lines only)is availabldrom KernScore$

Another stylistically distant collection of songs from KernScores is contained in the
Essen collectioSchaffrath, 1995 from which we take all German folk songs (5365).
Again, these are readily available in Kern forfnat

For our next most distant frame of reference, we took a sample of popular bisic,
top 10 hitsbetween 1960 and 1975, which contains 484 soWgs refe to this
collection asPop songs

Finally, the most remote point of comparison is taken fidative American song¥

the Ojibway, Sioux, and Pawnee cotlett by Frances Densmor€his corpus of 366
songs, edited by Paul von Hippel, is available otlinend serves to illustrate the
farthest departure from the original renaissance sample. By way of summary, basic
information about these collectioisgpresented in TablError! Reference source not
found..

Table 1. Summary of theollections.

Collection N Voices Notes Source
Coppini collection 24 4-5 3112 KernScores
Bachchorales 371 4 84666  KernScores
Early Renaissance collection 384 4-5 51236 Private

Schubert & Foster songs 73 Monophonic 10635 KernScores
Essen collection 5365 Monophonic 301617 KernScores
Pop songs 484 Monophonic 131697 Private

Native American songs 366 Monophonic 22740 KernScores
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3.3 Selecting therepresentation

Once a suitable corpus has been identifieel,have to askow best to represent the
music br the model. Although we are interested in modelling human perception,
particularly melodic expectations, we do not attempt a completely accurate
reconstruction of the physiological and psychological processes involved in auditory
representation of sounffom the ear upwards. Rather, we identify a level of
representational abstraction in auditory processing that is appropriate to the questions
of interest. Here, we are concerned with Highel musical structure, so we assume that
lower-level mechanisms dleer a notelike representation of music, and take this as
our musical surface.

3.3.1 Transcription

There are many issues involved in making accurate transcriptions into modern staff
notation of original sources, whose notation systems may requirergttgipn and

which may be handwritten, incomplete, damaged or otherwise ambiguous in a variety
of ways. One potential application of the approach presented here would be to use a
trained model to disambiguate the process by, for example, making predatiimns

the most probable pitch spelling or note durafiénopke & JYrgenser2012)

3.3.2 Basic representations

It makes sense to start with the most fundamental properties of notes: their pitch and
timing (duration and onset timehough other featuresich as dynamics, timbre and
articulation would also be of interedtherefore the task set for the model would be to
predict the onset timand absolute pitch (the former represented in beats, the latter
represented as MIDI note numbers, see TBbler! Reference source not found) of

the next note in the music, given the previous notes (assuming for now that we are
dealing with monody we come to polyphony belowin our example below we focus
exclusively on pitch to illustrate the approach.

3.3.3 Derived representations

Previous research has demonstrated that derived viewpgietd significant
improvementsin terms ofbothimproved prediction performance and fit to human data
(Pearce, 2005). For pitch, representations of relative pitch, especiatyaihiin
semitones, see Tablgror! Reference source not found), have proved particularly
fruitful (Pearce eal., 2010). Aother useful pitch representationoistaveequivalent

pitch clas (MIDI pitch modulo 12 see Tablé&rror! Reference source not found.
eliminating octave informatiorfzinally, chromatic scale degree can be computed by
making pitchclass relative to a tonal centre such that, for example, 0 is the tonic, 2 the
supertonic and so on (see Tablel2hked viewpoints combining pitch featuresthv
rhythmic features have also shown their worth (Pearce, 2005), suggesting that pitch
structure and rhythmic structure tend to be correlated.
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Table 2.Examples of the melodic representations for the first phrase of Giovanni Maria NaninoOs
Artifex mirus (canto voice)Note that the Krumhangchmuckler key finding algorithm returns
the key of A minor for the whole @&rtifex mirus.

Onset time 0 4 5 7 11 13 15 17 18 19 21
Duration 3 1 2 4 2 2 2 1 1 2 2
Pitch C#5 C#5 C#5 D5 F5 ES5 ES5 E5 D5 ES5 ES5
Pitchclass C# C# C# D F E E E D E E
MIDI note number 73 73 73 74 77 76 76 76 74 76 76

MIDI numbemod12 1 1 1 2 5 4 4 4 2 4 4
Chromatic Scale degr{ 4 4 4 5 8 7 7 7 5 7 7

(relative to A

Pitch interval NA 0 0 +1 +3 -1 0 0 -2 +2 0

It would also be possibl® consider simultaneous harmonic intervals (chords) in the
polyphonic compositions or implied tonality in monophonic music. However, this
could be problematidn a historical contexif the representation is founded on
assumptions of functional harmonyRdhrmeier, 2011). Such issues could be
circumvented if the vertical sonorities are merely described by a descriptive labelling
such as Allan ForteOs-#a¢oretical system (Forte, 1973).

Finally, to compare multiple works in terms of their pitch or intea@ntent, it is
prudent to attempt to align them to the same approximate tonal centre, so that
meaningful comparisons can be carried out. Naturatihceps of tonality may not

apply in the same way to all music corpora, across historical pebotithe broadest

level mostmusicalcultures using discrete pitches rely onrhiehical organisation of

pitch classes (Stevens, 2004). For this reason,preder to use (chromatic) scale
degrees by making the pitch classes relative to a tonal cSitiee he keysignature
cannot be used to infer the tonal centre, we adopt a perceptual solution and transpose
each work using the KrumharSthmuckler keyfinding algorithm (Krumhansl, 1990),
which compares the pitctlass distribution of the work to the 24 pibds key profiles
(Krumhansl & Kessler, 1982) and chooses the one with the highest correlation.

3.3.4 Representing polyphony

A limitation of the system described above is that it only applies to melody, where the
sequence of notes making up the contextdrediction is unambiguou#\though
research hagxtendedmultiple viewpoint frameworkdo homophonyespecially in
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voiced music(Conklin, 2002) the problem of representing polyphonic music of
arbitrary complexity in an appropriate way for statisticaldelling remains unsolved

to date Although this is not problematic for some musical styles (e.g., plainchant), any
complete representational system must handle the complexities of true polyphony. In
particular, one has to address the question of streafBiegman, 1990): one cannot
always assume that all voices fuse together into a single stream of harmonic movement.
We can identify three broad approaches for applying statistical models to early

polyphony:

1. treat each voice independently;

2. assume aisgle homophonic harmonic movement;

3. identify points at which different streams segregate and integrate perceptually
prior to modelling.

The first approach, in which each part is represented individually as a separate monody,
could be useful, for exang in making comparisons between different voices. A
variant of this approach would be to attempt to identify the melodic line likely to be
perceived, either by taking the highest voice or using some automated procedure such
as the skyline algorithm (Uiehbogerd & Zobel, 1998). The second approach involves
developing a representation scheme for harmonic movement within the multiple
viewpoint framework. Some progress towards this goal has already been made
(Conklin, 2002 Whorley etal., 2010). However, rither of these approachiscapable

of capturing relevant structural relations between the voices in music such as
counterpoint (from the Renaissance onwards). The final approach, therefore, is the most
complex, since it effectively involves building agritive model of stream segregation

prior to analysis. A model capable of combining both horizontal and vertical constraints
will be better able to capture voibeading constraints in counterpoint, for instance.
(See Huron, 2001, for an analysis of veleading principles in terms of experimentally
established perceptual principles.) Nonetheless, it is worth noting as a goal to strive
towards. In the meantime, the pertinent question is: to what extent can useful progress
be made using the first two optigh

3.3.5 The present representation

In the present approach, we focus on melody to demonstrate the basic principles of the
approach. We represent melodies in terms of sequencgwahatic scale deges
(relative toa tonic, see Table Pand sequenced pitch intervals (representing the
difference in semitones from the previous pitch in the melseg Table Pwhich have

been used in previous work (e.g., Hansen & Pearce, 2014; Pearce et al F@tddle
degreerepresentations, pitetlassesare reresented relative to the tonakntre
indicated by &ey-estimation algorithm(Krumhansl, 199Q)In computing the tonal
centre, f there are several melodic lines in the excerpt, we aggregate the counts across
the voices by adding up the distributionscssr the voices and divide them according

to the total numbeof events Although both pitch representationéscale degree and

pitch interval) are simple, there is much evidence to suggest that interval
representations are important in the perception oficaustricture (Dowling &
Bartlett, 1981;MYllensiefen & Frieler, 2007). We represent intervals across rests
(effectively ignoring rests), on the assumption that listeners perceive melodic intervals
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across rests (although this may not be true for the kimgsts in the corpora, the effects
should be relatively small).

Scale degreer pitchinterval frequencies can lm®mputedn a way that incorpotas

the transitions between sequent@lents. When we go beyond the zerotter
statistics (unigramdpwhich are merely theréquency counts of eithecale degresor
intervalsb higherorder representations reflect the transitions between the tones and
intervals (1storder statistics or bigrams), sequences of three tones/intervaisi@sd
statistics orrigrams), up to sequences of five tones/intervals-¢4dler statistics or-5
grams). These higherder modelstypically reveal the structural particularitie$ o
specific musical styles to a greater extdran the general patterns usually evident in
zeroh-order statistics. Moreover, listeners have been shown to be sensitive to such
patterns in music and the highender statistical information is something that listeners
with appropriate stylistic knowledge can utilise in predicting musical continuations
(Eerola etal., 2009).

Collection Collection
A B
For each work]in the collection For each work]in the collection
7 2
Key estimation Key estimation

S-gram

- * Pitch-class, Interval (&£ * H

Frequency trigram Frequency
=—unigram
| |
Aggregate across the collection Aggregate across the collection

Distribution '

Distribution "
.\Mutual _/

Information

How similar are the distributions?

Figure 1. A schematic diagram of the analysis and comparison process.

Higherorder global measures of note and interval transitions might be good candidates
for representing the loagrm knowledge of a particular style. For ingtanthe 5

grams for these collections tend to highlight more structurally specific aspects of
melodic structures such as the typically descending scalar interval motifsiarke
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Renaissance collectiofthe most prevalent of these beiy-1 -2 -2 2 arl its close
alternatives, expressed in semitones) compared to prominent motifs based on note
repetitions in popular music (0 00 0 0 and 0 0 0 O 2 being the two most cormmon 5
grams in thepop songy or repetitions with descending minor thirds in tRative
American collectior{-3 0 0 0 0 and €3 0 0 0). However, the higher the order of the

gram, the more structurally specific and exclusive the information represented, which
can impact negatively on generalisation to music not appearing in its traihing se

We can explore the utility of the different representations and specificities of the global
measures by comparing their similarities to each other. In order words, we want to
assess whethehe LTM representations weestructare distinct enough to sinfate
enculturated listeners from different places at different points in time. Figue
Reference source not foundshows each of the steps involved the overall process

of comparison(key estimation, computing unigram, trigram andr&m frequeng

counts forscale degree and intervals, aggregating across the collections and then
comparing the resulting distributiondp aggregaing across collectioswe simply
summed and normalised tHistributions of the individual works @fachcollection.To
effectively compare the different distributions to each other, we need a measure that is
especially sensitive to small variations between the distributions. One such measure is
Mutual Informationthat captures the mutual dependence of the two distritsution
(MacKay, 2003):

Pl T
I(X;Y)= p(z,y)log Az.9) (4)

o X gl Y p(z)p(y)
Mutual Information ranges from O (indicating compleiadependence) to
min(H(X),H(Y)) (indicating complete redundancy between X and ¥Yjle use a
normalsed version, (X, Y)DI(X; Y)) / H(X, Y)that varies between 0 and 1 and can
be used as a distance meas@ther relatednformationtheoreticmeasures exist (e.g.,
Kullback-Liebler or Jenseishannon divergenceyhich can be examined in future
research.

3.4. Selecting the Model Parameters

In many cases, it makes sense to usenabination of short and lorgrm models both
because this improves prediction performance (Pearce, 2005) but also because it makes
for a more plausible model of human perception, combining-$&iort learning of local
structure in the current listeningisode with schematic implicit knowledge learned

over a longer period of experience with music. In general, BOTH+ is the most flexible
model and tends to yield the best prediction performance (Pearce, 2005). The LTM+
configuration often achieves comparap&formance to BOTH+ but does not allow us

to delineate and separately examine the shartd longterm influences on
expectations.

In the present work we limit ourselves to simple LTMs trained on different stylistic
collections of musicSince we are imtrested in relationships between collections of
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music, rather than within individual compositions, the STM is less relevant to our
enquiry. Because these collections are static, we prefer the LTM to the LTM+.

We are now ready to train models on the setbctepora to simulate different listeners.

4. Results

For our illustrative exampleswve use several LTMs trained on the music of a given
period to simulate a listener from the time and location of the stylistic tradition. By
comparing models trained on fdifent historical corpora, we can start to examine the
model parameters requiredgimulateadequately mhistorical listener enculturated in

a given musical tradition. We will first look at the specificity of gieulations at the
level of entire colletions, thenexamine relationshipamongst the musical pieces

the collectionsand finally weapply the models to specificexcerpt from the&Coppini
collection We remindthe reader that these examples are intended to illustrate the
approach and providespringboard for further discussion and development rather than
provide definitive results.

4.1 How specific are the longterm models?

If we look at the basic representations presented above, a question arises about how
much statistical structure ibared or distinct between diffetecorpora?or instance,
simple zerothorder (unigram)modelsof pitch class anditch interval in folk music
spanning different continents are to a large degree indistinguishable (Huron, 2001).
Such broad characterisatare assumed to reflect basic organisation principles that
are related to human production and perceptual systems. Small intervals, for instance,
are favoured due to constraints of tessitura and waogle (von Hippel, 2000) artke
organisation of freqgencies mto discrete pitches that are organised hierarchically across
the octave is another heuristic facilitating memory (Kesslel.etl984). For this
reason, it is likely that such simple summaries are not particularly gooddong
models of stylistally-specific structures in musical traditions. To demonstrate this,
FigureError! Reference source not found. displays the interval distributions
(unigram) of all 7 collections selected here. This not only illustrates how small intervals
dominate but howsmall the differences are, from casual visual inspection, between
many of the distributions (in particul&ssen folk song$op songsand Schubert &

Foster songsare indistinguishable). Th€oppini collectionand Native American
collectionstand out inhis comparison by their frequent note repetitions.

To explore the utility of different representations (basic and derived) and specificity of
the higherordern-grams, we calculated the similarity between @ugppini collection

and the comparative LTMs (ggegatech-grams of other collections), using both scale
degree and pitch interval representations with a range of model orders (unigram,
trigram, 5gram) according to the process illustrated in Fiduré/e define similarity

using mutual information, whit reflects the mutual dependence of the two
distributions. This exercise, provided in Table 3, underscores the assumption that low
order statistics (unigrams, even trigrams here) are unable to bring out specific
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differences between the LTMs since mostlté tollections yield a range of highly
similar values taCoppini collection(for unigrams based on intervals, all are between
.59 and .80).

Coppini collection Early Renaissance collection
g g
c o
o i)
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o o
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o o
[N o
0 0
-P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8 -P8 -M6 -d5 -m3 Pl +m3 +d5 +M6 +P8
Interval Interval
Bach Chorales Schubert & Foster songs
2 25 1 2 25 1
< 20/ 1 < 20
S 15} 1 £ 15
8 10t 1 8 10t
o o
a ° 1 a °
0 0
-P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8 -P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8
Interval Interval
Essen folk songs Pop songs
2 25 1 2 25 1
< 20t < 20t
c c
2 15} 2 15}
8 10f 8 10f
o o
a ° a °
0 0
-P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8 -P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8
Interval Interval
Native American songs
= 50} 1
=~
< 40t |
c
2 30f 1
S 20t 1
o
& 10} 1

0
-P8 -M6 -d5 -m3 P1 +m3 +d5 +M6 +P8

Interval

Figure 2. Interval distributions across the collections. Horizontal axis refers to the interval size
and directim in semitones (from descending octaxR8, to unison, P1, at the middle, to the
ascending octave, +P8).

In contrast, the highesrder statistics (rams) display a rudimentary form of stylistic
sensitivity in showing that théarly Renaissance collectidas the closest relationship

to theCoppini collection(intervatbased Egrams, 0.80) whereas the other collections
show decreasing similarity (from .70 to .59). These results are useful in determining
how to choose LTMs that are specific enough to rgremusical knowledge specific



Music perception in historical audiencé®7

to a particular style of music. Although these simple models trained on limited numbers
of musical examples are far from perfect simulations of the knowledge possessed by an
enculturated listener, they do at least allowauartalytically assess the implications of
building LTMs from different corpora to simulate listeners with different cultural and
historical sensitivities.

Table 3. Similarity of eachcollection tothe Coppini collection.

Similarity with the Coppini colletion

Scale degree Pitch interval
Collection unigram trigram 5-gram unigram trigram 5-gram
Early Renaissance collectio 0.89 0.72 0.67 0.59 0.73 0.80
Bach Chorales 0.67 091 0.58 0.80 0.68 0.70
Schubert & Foster songs 0.55 0.60 0.74 0.75 0.76 0.76
Essen collection 0.61 0.60 0.76 0.73 0.78 0.66
Pop songs 0.66 0.77 0.64 0.72 0.74 0.68
Native American songs 0.82 0.60 0.71 0.60 0.50 0.59

Next we present an analysis at a more detailed level, examining differences between
individual compositions rathéhan collections.

4.2 How consistent are the longerm models?

As well aslooking at the collections as a whole, represented as avenegyaans, we

are also interestedn how individual works relate to other pieces both within and
between collectionsThere are numerous techniques within the field of machine
learning for conducting such an analysis, particularly if we want to know which features
set the collections apart. Instead of such a discriminative analysis, here we aim to
examine the individualit or distinctiveness of compositions from each collection. We
will use one of the representations introduced above (trigrams based on pitch intervals,
a usefulcompromise between structural specificity and statispoavel) and take a
sample of 100 itemfsom each collection (exceptédlCoppini collectionrandSchubert

& Foster songswhichare present in their entirety). We calculate the similarity between
all pairs of items (597 in total) and after converting thesedabavisedistances, project

them usng Multi-Dimensional Scaling (MDSnto a lowdimensional spa¢é. The

result is visualised in twdimensions in Figur&rror! Reference source not found.
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Figure 3. A projection of the similarities between the 100 examples from each collection based
on thescale degreé¢rigrams. The axes are simply the first and second dimensions extracted in
the MDS projedbn of the original dataafd havearbitrary units). Our simple interpretation of

the axegsee text)s that theabscissa (Dim. 1) represents the riclsn&fthe interval palette while

the ordinate (Dim. 2) represents a continuum from unisons to scalar sequences.

The laels in Figure 3ndicate the central points for each collection in the projected
spacecomputed by the MDSwhich reveals howCoppini and Early Renaissance
collections andBach ChoralesindNative American sondgsrm fairly distinct clusters
whereasSchubert & Foster song&ssen folk songsandPop songsare diverse and
scattered widely across the projection. Items ctogetherin the pojection are more
similar in terms of therigram pitch interval modeEven though this modetas not

the most discriminanin separahg the other collections from th@oppini collection
using mutual information (Tabl&rror! Reference source not found), interesting
relationships between the higtorder interval structures can be interpreted from this
visualisation. One simple interpretatisnthatthe vertical axis represents a continuum
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from unison to scalar sequenc&dompositions situated ithe upper part of the
projection exhibit repeated interval combinations frequently and employ a wide variety
of intervals whereas those at the other extreme (lower half) tend to draw from a more
constrained set of intervals but less frequently rely osand. A simple interpretation

of the horizontal axisvould be to relate it tahe richness of the interval palette
Compositionson the extreme left contain the most varied palette of three interval
combinations whereas the examples on the riglktauresticted palette of interval
chains.

If this interpretation is core, it is perhaps not surprisirtbat polyphonic works bear

a close relationship to one another: Bagly Renaissance collecti@ndBach Chorales
partially overlap, and the items in t@®ppini collectionoverlap withBach Chorales
Native American songseem to be most distinct from the other collections.
Compositions fromhe remaining three collections are scattered across the projection
which reminds ughat the collections do contastylistically diverse materiale.g.,
characteristic differences betwe&chubertand Foster songs the variety of genres
represented inPop songs and therange of temporal and geographic cultures
represented in thEssen collection

Although this visulisation is far from completee(g.,it relies on a single pitcimterval
feature,we retain only two dimensions the projectiorand so o} it does reflect the

fact that the collections are not monolithic entiti®&fferent features models,
similarity measures angrojection techniquesnay result in different projections.
Properly and rigorously developed, however, this appraachlead to interesting
insights if used in conjunction with historical and stylistic information about the crucial
structures within and betweerompositionsFor examplenonttraditional authorship
attribution could be used to attribute unknown works to the stylistic signatures
exhibited by a composer or a geographical group of composers (Dor & Reich, 2011
JYrgensen & Knopk&006).

Next we will apply the stylistically close and distant LTM models to #hgt@ote
expectéionsto investigate thexperience ofimulated listeners throughout listening to
an individual composition.

4.3 Application of two long-term modelsto seleted examples

Next we illustrate how the models representing different LTMs might act as a useful
diagnostic tool in explaining what listeners exposed to these styles of music would
expect as typical melodic movements. The first example comes from theénCopp
collection, bars 1 to 13 from Giovanni Nanin@gifex Mirus (the Canto voice). To
contrast two LTMs, one closely associated with this repertoire, another less so, we take
the Coppini collection (minuértifex Mirug as the styleappropriate LTM andhie

Essen collection as the unrelated one. Mutual information of tp@r8s based on
intervals within each -ote segment of the canto voice versusrdspectiveLTM
representation is calculated for battodels to derive a prediction feach note. To
illustrate the predictions between the LTMs, we have normalised the mutual
information across the piece for both LTMs, which renders the segments comparable
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(asthey have the same scale) and easily interpretable é@oge 0 suggest that the
note is preditable from the LTM while value below 0 suggest that is unpredictable).

Figure 4illustrates how the first 9 bars éfrtifex Mirusare more predictable in terms

of the CoppiniLTM (represented black bas which tend to havpositive values),
presumablydue b rules dictatingspecies counterpoint in renaissance polyphony (e.g.
favour small scale steps, avoid augmented/diminished intervals, skips larger than
sixths, see Schubert, 1999). Also, the suspeanisidhe cadential figure ibar 9 with
musica fictaand passing notes seems to be particularly typical of the interval patterns
in the CoppiniLTM in comparison tdhe Essen LTM
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Figure 4. Mutual Information betweetwo longterm memory representations, Coppini (black)
and Essen (white) for bars1B from NaninoOArtifex Mirum(Canto voice).

This particular cadence pattern is similarly flagged as predictable in other works of the
Coppini collection. For instance, Monteverd?alchr¥ sunt gen¥u¥ (Quinto voice,

bars 9395), shown in Figure,5s anothe example of how th€oppini LTM can pick

out the characteristic patterns of the styd¢ter than the Essen LTM
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Figure 5. Prediction of two LTM models representing renaissance polyphony (Cdpbiack
bars) and folk songs (Essen collectwhite bars) for MonteverdiGulchr¥a sunt gen¥a
(Quinto voice, bars 995).
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To illustrate that the LTM models are specifiche styles they represent, let us apply
them to an example frothe Essen collection. Figurev&ualises the model output for
the ture Beschattet von der Pappel Weiflieut2579), where we sdbe opposite
pattern to Figures 4 and $he locations containing multiple triadic leaps (the end of
bar 1, bar 5 and beginning of the bar 6) fatendto bebetter predicted by the Essen
LTM, and again we assume this due to different stylistic des and conventions
learned by these LTMs from tleellectionson which they were trained

Normalised Mutual
Information
Lo e

Figure 6. Prediction of two LTM models representing renaissance polyphony (Cdppiack
bars) and folk sorgy (Essen collectio® white bars) for a German folktune from the Essen
collection Beschattet von der Pappel Weithars 16, deut2579).

One could also use the models to analytically compare the rules of renaissance
composition (avoid augmented/diminishiatervals, sevenths, sixths down, large than
octave intervals, tritozs, etc.), for example, and other stylistic traditjobst the
purposeof the present proposal is to use toepus as a set of examples for implicit
learningand cognitive modelling raer than style analysis per. §&evertheless, corpus
based analysis of this kind gfit also be used to explore stylistic devices suaiées
cambiatapatterns, orhte sacalledLandini cadenceésee Fallows, 2015)

The analysis offered is not without prebis, however. We are acutely aware that the
comparison of monophonic and polyphonic music is not entirely satisfactory since the
voice-leading principles in polyphonic material often lead to large intervals in
comparison with monophonic melody that hasecompaniment (pop music). Also, it

is somewhat problematic that we are treating the five voices separately and aggregating
the results since this probably masks the larger deviations within the individual voices.

A potentially elegant way of handlirntgerules of counterpoint thaionstrain pitchin
renaissance works is to extend thpresentation of statistical relationshijggweenas
well as within, voices. Preliminary work by Conklin & Bergeron (2010)has
demonstrated that this can be achieved withe multiple framework adoptédzre In
this multipleviewpointschemeprobabilities ofintervals to other voices at each onset
would also beomputedand used aanadditional distribution in the comparisons. This
would have an effect of delineatingoeharmonic and melodicombinations that are
forbidden or rare from thse that appear frequently (in particular contextsk
renaissance corpus without the analyst coding these as fixed rules (Boenn et al., 2012).
However,further featureswould be neessary to account fahe principles of voice
leading. For instance, duration and metrical posifitate constraints on permitted
simultaneous or successive intenialsenaissance musi€onstructing sucmultiple
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viewpoint modelsis oneway to build more accurate cognitive representations of
contrapuntal structurghan our presentsimple demonstration with monophonic
melodies Future work should further develop the multiple viewpoint approach for
representing such multeature contrapuntal constraints.

Finally, it must be kept in mind that we have only used models oftkenmg memory.

The listener will also draw on shetdrm memory to follow the patterns unfolding and
repeating (with variation) within a piece of music. By incorporating steonh memoy

in the models, most of the frequently repeated sequences of music will become less
unpredictable to a computational mo@hd, presumably, to an enculturated listener)

In our simpleillustration, for the sake of simplicity, wassume that this shetgrm

memory operates similarly across the models and hence the discrepancies produced by
different longterm models would still be evident.

Despite thessignificantcaveats, the purpose of the example is to highlight how the
computational modelsan be use to generate or evaluate hypotheses about how
responses to musical passages, as they unfold in time, will vary systematically
according to the musical enculturation of the listener.

5. Conclusions

Our goal was to develop a computational framework for ldgieg simulations of
historical listeners, allowing us to generate and test predictions about their responses to
music. In this approach, a model of musical expectations which has been demonstrated
to accurately account for the perception of presintisteners is applied to the task

of understanding the psychological processing of music by listeners at previous points
in history. This involves training models on representative corpora of music to simulate
a listener enculturated the musical styleepresented byhe corpus.

We have identified the central methodological decisions that must be made when
applying the framework and given a simpllestrative example of how it can be
applied coveing three levels of detail. First, we examined differenbetween
simulated longerm models trained on entire collections, finding that highder
models and pitch interval representations are most discriminative of simulated listeners
from different historicaperiodglocations. The Hram pitch interval maels exhibited
differences between the collections which roughly matched their cultural proximity to
the Coppini collection of seventeerthntury madrigals. We then examined
similarities between the responses of our simulated listeners to individual
compodtions, representing those similarity relationships in-d @rojection. This
analysis showed that th€oppini collection Bach chorales Early Renaissance
collectionandNative American songdustered in differetparts of the spacehereas

the other cbections were dispersed more evenly. This analysis, therefore, reveals
information about individual compositions withircallection which are lost when the
collectionis considered in aggregate. Finally, we examined-hgteote responses of

our simulabbns throughout one madrigal in th@oppini collection This analysis
reveals parts of the piece where the simulation of a Pop listener diverges strongly from
that of a simulated early Renaissance listener.
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A more thorough analysis of particular passafyjes the Coppini collection could
providefurtherinsights into thebehaviour ofthe modelsAre themodels sensitive to
structureghought to becharacteristic of a compoggrstylein historical musicology
How are unexpected melodic events prepared suateeded irterms of vertical
sonoritiesand can these be represented by the m@#&elsinstanceit would be fruitful
to add a model oflissonanceo the approachwhich emuld combinepsychoacoustic
aspects of musiperceptionVassilakis & Kendall, 208) andhistoricalunderstanding
of constraints on harmonic intervals in different cultures at different pefielger,
2004). Finally, one could ask whether relationshiptween the lyrics and specific
patterrs of musicaleventsmight influence a listegr.

Besides being of interest in its own right, the approach might be useful in addressing
issues in historical musicology and music cognition, such as pitch spelling and musica
ficta (e.g., Knopke & JYrgensen, 20\ 2eredith, 2006), authorship attributie.g.,

van Kranenburg, 2008), stylistic characterisation, development and influence (e.g.,
Cook, 2007 Volk & de Haas, 2013), and the development of tonal perception (e.g.,
Huron & Veltman, 2006). We have used relatively simple musical representations
(scale degreeand ptch interval) in our examples. Other representations of musical
structure may benore appropriate; for example, octave equivalence is often not as
strong in modal music as in tonal music, suggesting that absolute pitch representations
might be usefulln addressing the challenges identified abdterefore,it will be
necessary to use more sophisticated representaticoging

¥l different pitch representations;

¥l both horizontal and vertical constraints in polyphonic music;
¥ correlations btween pitch and rhythmic structure;

¥l relationships between music and text.

The models we have used to exemplify the approach analyse a collection of music with
a very broad brush. However, distinctions between styles often rest on specific rarely
occurring details. It would be possible to capture such effects of rareness within and
between the music of differehistoricalperiods using techniques such as TF/IDF (see
e.g., MYllensiefen & Pendzich, 2009, for a musical application). However, it is worth
beaing in mind that the goal is teimulatethe perception of a listener, which is not
necessarily the same as modelling musicological differences bethistarical
corpora.

We have sketched how the framework can be applied at a range of levels: examining
whole collections, individual compositions and, finalgpecific notes within those
compositions. We did not pursue the interpretations of these analyses in great detalil,
because we believe this will benefit hugely from fruitful collaboration between music
history and music cognitionTherefore, our analyses should be taken as illustrative
examples of the approach rather than presentations of definitive results.

Future research should extend this sketch in various ways:

1. Can we be more specifici.e., malel the response of particular listenéws
particular pieces of music?
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2. Can we successfully model complex polyphonic music, requiring more
sophisticated representations, including rhythmattggns and harmonic
movement?

3. Is there benefit to using mersophisticated computational models, including
shortterm models, variable ordeobnds and multiple viewpoints?

4. Perhaps most importantly, can we use the framework to tackle more complex
reatworld musicological challenges (conversely, the approactisnkeistorical
musicological data to test its predictsoabout historical listeners)?

If it is possible to address some of these questions, the framework carries great potential
for answering fundamental questions about the ways in which early music was
perceived and understood by its original audiences.
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